
PROBLEM SET 11
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Problem 1. If Xn → X in probability, then PXn → PX vaguely.

Proof. Let Fn(x) = PXn
((−∞, x]) = P (Xn ≤ x) and F (x) = PX((−∞, x]) =

P (X ≤ x). Suppose F is continuous at x, then for any ε > 0, we can find δ > 0
so that |y − x| ≤ δ implies |F (y)− F (x)| ≤ ε/2. Since Xn → X in probability, we
have P (|Xn −X| > δ) → 0 as n → ∞. Therefore, for n big we have P (|Xn −X| >
δ) ≤ ε/2. So on the one hand, we have

FXn
(x) = P (Xn ≤ x) ≤ P (Xn ≤ x, |Xn −X| ≤ δ) + P (|Xn −X| > δ)

≤ P (X ≤ x+ δ) + ε/2 = F (x+ δ) + ε/2

≤ F (x) + ε.

On the other hand, we also have

FX(x) ≤ FX(x− δ) + ε/2 = P (X ≤ x− δ) + ε/2

≤ P (X ≤ x− δ, |Xn −X| ≤ δ) + P (|Xn −X| > δ) + ε/2

≤ P (Xn ≤ x) + ε = FXn
(x) + ε.

This proves for n big, |Fn(x) − F (x)| ≤ ε. Thus Fn(x) → F (x) as n → ∞. Since
PXn are probability distributions, ‖PXn‖ = 1, therefore by Prop. 7.19, PXn → PX

vaguely. □

Problem 2. Identify T1 with {z ∈ C : |z| = 1}.
(1) If X1, ..., Xn are independent, then PX1X2···Xn

= PX1
∗ · · · ∗ PXn

.
(2) If {Xj} is a sequence of independent random variables with common dis-

tribution λ, the distribution of
!n

1 Xj converges vaguely to the uniform
distribution on T1 unless X1 is supported on a finite subset of T1.

Proof. (1) Recall that for any two measures on T1, by definition we have µ ∗
ν(E) =

" "
χE(t1 · t2)dµ(t1)dν(t2) where t1 · t2 is the group multiplication

on T1 which agrees with the standard multiplication on C.
Let A(t1, . . . , tn) =

!n
1 tj . Then X1 · · ·Xn = A(X1, . . . , Xn), so

PX1···Xn
= (P(X1,...,Xn))A = (

n#

1

PXj
)A.

Therefore,

PX1···Xn
(E) = (P(X1,...,Xn))A = (

n#

1

PXj
)A(E)

=

$
· · ·

$
χE(t1 . . . tn)dPX1

(t1) · · · dPXn
(tn)

= PX1 ∗ · · ·PXn(E).
1
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(2) As we see in HW 9, either λ is supported on a finite subset of T1 or |λ̂(k)| < 1
for all k ∕= 0. In the latter case, by (1) we have

|P̂X1···Xn(k)| = |
n#

1

P̂Xj (k)| = |λ̂(k)|n → 0 as n → ∞ for k ∕= 0,

Notice that the uniform distribution µ on T1 has,

µ̂(k) =

$ 1

0

e−2πikxdµ(x) = 0 for k ∕= 0.

This, together with P̂X1···Xn(0) = 1 = µ̂(0), proves P̂X1···Xn → µ̂ pointwise.
Hence by a similar argument to that in Prop. 8.50, PX1···Xn → µ vaguely.

□
Problem 3. Given b ∈ N \ {1}, let B = {0, 1, ..., b − 1} and Ω = BN. Put the
discrete topology on B and the product topology on Ω, and let P be the product
measure on Ω, where each Pn is b−1 times counting measure on B. Let {Xn}∞1 be
the coordinate functions on Ω. Then if A1, ..., An ⊂ B,

Prob

%
n&

1

X−1
j (Aj)

'
= b−n

n#

1

|Aj |

and P ({ω}) = 0 for all ω ∈ Ω.

Proof. Since
(n

1

)
X−1

j (Aj)
*
=

!n
1 Aj × BN−{1,...,n}, by definition of product mea-

sure we have,

Prob

%
n&

1

X−1
j (Aj)

'
=

n#

1

Pi(Ai)× 1 = b−n
n#

1

|Aj |.

Then since ω ∈ ∩n
1X

−1
j ({Xj(ω)}) for all n, it follows

P ({ω}) ≤ b−n
n#

1

1 = b−n → 0 as n → ∞.

□
Problem 4. Prove the following. Let

Ω′ = {ω ∈ Ω : Xn(ω) ∕= 0 for infinitely many n}.
Then Ω \ Ω′ is countable and P (Ω′) = 1. Define F : Ω → [0, 1] by F (ω) =+∞

1 Xn(ω)b
−n. Then F |Ω′ is a bijection from Ω′ to (0, 1] which maps BΩ′ bijectively

onto B(0,1].

Proof. It is clear ω ,→
+∞

1 Xj(ω)x
j defines a bijection between Ω and all power

series with coefficients in B. Under this bijection, Ω\Ω′ corresponds to polynomials
with coefficients in finite set B, which is clearly countable (by considering degree).
Therefore Ω\Ω′ is countable as well. And since a single point has measure zero in
Ω, so does the countable set Ω\Ω′, hence P (Ω′) = P (Ω) = 1.

Notice that BΩ′ is generated by sets {ω ∈ Ω′ : Xj(ω) = aj}, and hence
generated by {ω ∈ Ω′ : X1(ω) = a1, . . . , Xn(ω) = an}. Under F , the set {ω ∈ Ω′ :
X1(ω) = a1, . . . , Xn(ω) = an} is mapped to all numbers of the form 0.a1a2 . . . an . . .

under base b decimal expansion. This is precisely the interval ( j
nn ,

j+1
bn ] where

j = a1b
n−1 + · · · + an. Now since intervals of the form ( j

bn ,
j+1
bn ] generate B(0,1],
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F maps BΩ′ bijectively onto B(0,1]. Moreover, from Problem 3, the set {ω ∈ Ω′ :

X1(ω) = a1, . . . , Xn(ω) = an} has probability b−n which agrees with the Lebesgue

measure of ( j
bn ,

j+1
bn ], this proves F carries P to the Lebesgue measure. □

Problem 5. (Borel’s normal number theorem) A number x ∈ (0, 1] is called normal
in base b if the digits 0, 1, ..., b − 1 occur with equal frequency in its base b decimal
expansion, that is, if n−1card{m ∈ {1, . . . , n} : Xm(F−1(x)) = j} → b−1 as n → ∞
for j = 0, 1, . . . , b − 1. Almost every x ∈ (0, 1] (with respect to Lebesgue measure)
is normal in base b for every b.

Proof. Let Ym,j(ω) = 1 if Xm(ω) = j and Ym,j(ω) = 0 otherwise. Since Xm’s are
i.i.d., so are Ym,j ’s with E(Ym,j) = b−1 (by an easy calculation). Since Ym are
bounded on finite measure space, Ym ∈ L1, the strong law of large numbers implies
1
n

+n
1 Ym,j → b−1 almost surely. Notice that

card{m ∈ {1, . . . , n} : Xm(ω) = j} =

n,

1

Ym(ω)

and F bijectively takes P to Lebesgue measure on (0, 1], we conclude

lim
n→∞

n−1card{m ∈ {1, . . . , n} : Xm(F−1(x)) = j} = b−1

for almost every x ∈ (0, 1].
Now we may finish the proof inductively as follow. First there is a probability

1 subspace Ω′
0 ⊂ Ω′ on which 1

n

+n
1 Ym,0 converges to b−1. Then we repeat the

argument for Ω′
0 to get a probability 1 subspace Ω′

0,1 ⊂ Ω′
0 on which 1

n

+n
1 Ym,1

converges to b−1. Keep doing this, we eventually get a probability 1 subspace
Ω′

0,1,...,b−1 on which 1
n

+n
1 Ym,j converges to b−1 for all j = 0, 1, . . . , b − 1. Notice

F (Ω′
0,1,...,b−1) is a subset of normal numbers, so almost every x ∈ (0, 1] is normal.

□


