PROBLEM SET 11

JIAHAO HU

Problem 1. If $X_n \to X$ in probability, then $P_{X_n} \to P_X$ vaguely.

Proof. Let $F_n(x) = P_{X_n}((-\infty, x]) = P(X_n \le x)$ and $F(x) = P_X((-\infty, x]) =$ $P(X \leq x)$. Suppose F is continuous at x, then for any $\epsilon > 0$, we can find $\delta > 0$ so that $|y - x| \leq \delta$ implies $|F(y) - F(x)| \leq \epsilon/2$. Since $X_n \to X$ in probability, we have $P(|X_n - X| > \delta) \to 0$ as $n \to \infty$. Therefore, for n big we have $P(|X_n - X| > \delta)$ $\delta \leq \epsilon/2$. So on the one hand, we have

$$F_{X_n}(x) = P(X_n \le x) \le P(X_n \le x, |X_n - X| \le \delta) + P(|X_n - X| > \delta)$$

$$\le P(X \le x + \delta) + \epsilon/2 = F(x + \delta) + \epsilon/2$$

$$< F(x) + \epsilon.$$

On the other hand, we also have

$$F_X(x) \le F_X(x-\delta) + \epsilon/2 = P(X \le x-\delta) + \epsilon/2$$

$$\le P(X \le x-\delta, |X_n - X| \le \delta) + P(|X_n - X| > \delta) + \epsilon/2$$

$$\le P(X_n \le x) + \epsilon = F_{X_n}(x) + \epsilon.$$

This proves for n big, $|F_n(x) - F(x)| \leq \epsilon$. Thus $F_n(x) \to F(x)$ as $n \to \infty$. Since P_{X_n} are probability distributions, $||P_{X_n}|| = 1$, therefore by Prop. 7.19, $P_{X_n} \to P_X$ vaguely.

Problem 2. Identify \mathbb{T}^1 with $\{z \in \mathbb{C} : |z| = 1\}$.

- (1) If $X_1, ..., X_n$ are independent, then $P_{X_1X_2...X_n} = P_{X_1} * \cdots * P_{X_n}$. (2) If $\{X_j\}$ is a sequence of independent random variables with common distribution λ , the distribution of $\prod_{j=1}^{n} X_j$ converges vaguely to the uniform distribution on \mathbb{T}^1 unless X_1 is supported on a finite subset of \mathbb{T}^1 .
- (1) Recall that for any two measures on \mathbb{T}^1 , by definition we have $\mu *$ Proof. $\nu(E) = \int \int \chi_E(t_1 \cdot t_2) d\mu(t_1) d\nu(t_2)$ where $t_1 \cdot t_2$ is the group multiplication on \mathbb{T}^1 which agrees with the standard multiplication on \mathbb{C} .

Let $A(t_1,\ldots,t_n) = \prod_{j=1}^n t_j$. Then $X_1 \cdots X_n = A(X_1,\ldots,X_n)$, so

$$P_{X_1\cdots X_n} = (P_{(X_1,\dots,X_n)})_A = (\prod_{1}^n P_{X_j})_A.$$

Therefore,

$$P_{X_1 \cdots X_n}(E) = (P_{(X_1, \dots, X_n)})_A = (\prod_{1}^{n} P_{X_j})_A(E)$$

= $\int \cdots \int \chi_E(t_1 \dots t_n) dP_{X_1}(t_1) \cdots dP_{X_n}(t_n)$
= $P_{X_1} * \cdots P_{X_n}(E).$

JIAHAO HU

(2) As we see in HW 9, either λ is supported on a finite subset of \mathbb{T}^1 or $|\hat{\lambda}(k)| < 1$ for all $k \neq 0$. In the latter case, by (1) we have

$$|\hat{P}_{X_1\cdots X_n}(k)| = |\prod_1^n \hat{P}_{X_j}(k)| = |\hat{\lambda}(k)|^n \to 0 \quad \text{as } n \to \infty \text{ for } k \neq 0,$$

Notice that the uniform distribution μ on \mathbb{T}^1 has,

$$\hat{\mu}(k) = \int_0^1 e^{-2\pi i k x} d\mu(x) = 0 \text{ for } k \neq 0.$$

This, together with $\hat{P}_{X_1 \cdots X_n}(0) = 1 = \hat{\mu}(0)$, proves $\hat{P}_{X_1 \cdots X_n} \to \hat{\mu}$ pointwise. Hence by a similar argument to that in Prop. 8.50, $P_{X_1 \cdots X_n} \to \mu$ vaguely.

Problem 3. Given $b \in \mathbb{N} \setminus \{1\}$, let $B = \{0, 1, ..., b - 1\}$ and $\Omega = B^{\mathbb{N}}$. Put the discrete topology on B and the product topology on Ω , and let P be the product measure on Ω , where each P_n is b^{-1} times counting measure on B. Let $\{X_n\}_1^\infty$ be the coordinate functions on Ω . Then if $A_1, ..., A_n \subset B$,

$$\operatorname{Prob}\left(\bigcap_{1}^{n} X_{j}^{-1}(A_{j})\right) = b^{-n} \prod_{1}^{n} |A_{j}|$$

and $P(\{\omega\}) = 0$ for all $\omega \in \Omega$.

Proof. Since $\bigcap_{1}^{n} (X_{j}^{-1}(A_{j})) = \prod_{1}^{n} A_{j} \times B^{\mathbb{N} - \{1, \dots, n\}}$, by definition of product measure we have,

$$\mathbf{Prob}\left(\bigcap_{1}^{n} X_{j}^{-1}(A_{j})\right) = \prod_{1}^{n} P_{i}(A_{i}) \times 1 = b^{-n} \prod_{1}^{n} |A_{j}|.$$

Then since $\omega \in \bigcap_{1}^{n} X_{j}^{-1}(\{X_{j}(\omega)\})$ for all n, it follows

$$P(\{\omega\}) \le b^{-n} \prod_{1}^{n} 1 = b^{-n} \to 0 \quad \text{as } n \to \infty.$$

Problem 4. Prove the following. Let

$$\Omega' = \{ \omega \in \Omega : X_n(\omega) \neq 0 \text{ for infinitely many } n \}.$$

Then $\Omega \setminus \Omega'$ is countable and $P(\Omega') = 1$. Define $F : \Omega \to [0,1]$ by $F(\omega) = \sum_{1}^{\infty} X_n(\omega)b^{-n}$. Then $F|_{\Omega'}$ is a bijection from Ω' to (0,1] which maps $\mathcal{B}_{\Omega'}$ bijectively onto $\mathcal{B}_{(0,1]}$.

Proof. It is clear $\omega \mapsto \sum_{1}^{\infty} X_{j}(\omega) x^{j}$ defines a bijection between Ω and all power series with coefficients in B. Under this bijection, $\Omega \setminus \Omega'$ corresponds to polynomials with coefficients in finite set B, which is clearly countable (by considering degree). Therefore $\Omega \setminus \Omega'$ is countable as well. And since a single point has measure zero in Ω , so does the countable set $\Omega \setminus \Omega'$, hence $P(\Omega') = P(\Omega) = 1$.

Notice that $\mathcal{B}_{\Omega'}$ is generated by sets $\{\omega \in \Omega' : X_j(\omega) = a_j\}$, and hence generated by $\{\omega \in \Omega' : X_1(\omega) = a_1, \ldots, X_n(\omega) = a_n\}$. Under F, the set $\{\omega \in \Omega' : X_1(\omega) = a_1, \ldots, X_n(\omega) = a_n\}$ is mapped to all numbers of the form $0.a_1a_2 \ldots a_n \ldots$ under base b decimal expansion. This is precisely the interval $(\frac{j}{n^n}, \frac{j+1}{b^n}]$ where $j = a_1b^{n-1} + \cdots + a_n$. Now since intervals of the form $(\frac{j}{b^n}, \frac{j+1}{b^n}]$ generate $\mathcal{B}_{(0,1]}$,

 $\mathbf{2}$

PROBLEM SET 11

F maps $\mathcal{B}_{\Omega'}$ bijectively onto $\mathcal{B}_{(0,1]}$. Moreover, from Problem 3, the set $\{\omega \in \Omega' : X_1(\omega) = a_1, \ldots, X_n(\omega) = a_n\}$ has probability b^{-n} which agrees with the Lebesgue measure of $(\frac{j}{b^n}, \frac{j+1}{b^n}]$, this proves F carries P to the Lebesgue measure. \Box

Problem 5. (Borel's normal number theorem) A number $x \in (0, 1]$ is called normal in base b if the digits 0, 1, ..., b-1 occur with equal frequency in its base b decimal expansion, that is, if $n^{-1}card\{m \in \{1, ..., n\} : X_m(F^{-1}(x)) = j\} \to b^{-1}$ as $n \to \infty$ for j = 0, 1, ..., b-1. Almost every $x \in (0, 1]$ (with respect to Lebesgue measure) is normal in base b for every b.

Proof. Let $Y_{m,j}(\omega) = 1$ if $X_m(\omega) = j$ and $Y_{m,j}(\omega) = 0$ otherwise. Since X_m 's are i.i.d., so are $Y_{m,j}$'s with $E(Y_{m,j}) = b^{-1}$ (by an easy calculation). Since Y_m are bounded on finite measure space, $Y_m \in L^1$, the strong law of large numbers implies $\frac{1}{n} \sum_{j=1}^{n} Y_{m,j} \to b^{-1}$ almost surely. Notice that

$$\operatorname{card}\{m \in \{1, \dots, n\} : X_m(\omega) = j\} = \sum_{1}^{n} Y_m(\omega)$$

and F bijectively takes P to Lebesgue measure on (0, 1], we conclude

$$\lim_{n \to \infty} n^{-1} \operatorname{card} \{ m \in \{1, \dots, n\} : X_m(F^{-1}(x)) = j \} = b^{-1}$$

for almost every $x \in (0, 1]$.

Now we may finish the proof inductively as follow. First there is a probability 1 subspace $\Omega'_0 \subset \Omega'$ on which $\frac{1}{n} \sum_{1}^{n} Y_{m,0}$ converges to b^{-1} . Then we repeat the argument for Ω'_0 to get a probability 1 subspace $\Omega'_{0,1} \subset \Omega'_0$ on which $\frac{1}{n} \sum_{1}^{n} Y_{m,1}$ converges to b^{-1} . Keep doing this, we eventually get a probability 1 subspace $\Omega'_{0,1,\ldots,b-1}$ on which $\frac{1}{n} \sum_{1}^{n} Y_{m,j}$ converges to b^{-1} for all $j = 0, 1, \ldots, b-1$. Notice $F(\Omega'_{0,1,\ldots,b-1})$ is a subset of normal numbers, so almost every $x \in (0,1]$ is normal.