PROBLEM SET 11

JIAHAO HU

Problem 1. If $X_{n} \rightarrow X$ in probability, then $P_{X_{n}} \rightarrow P_{X}$ vaguely.
Proof. Let $F_{n}(x)=P_{X_{n}}((-\infty, x])=P\left(X_{n} \leq x\right)$ and $F(x)=P_{X}((-\infty, x])=$ $P(X \leq x)$. Suppose F is continuous at x, then for any $\epsilon>0$, we can find $\delta>0$ so that $|y-x| \leq \delta$ implies $|F(y)-F(x)| \leq \epsilon / 2$. Since $X_{n} \rightarrow X$ in probability, we have $P\left(\left|X_{n}-X\right|>\delta\right) \rightarrow 0$ as $n \rightarrow \infty$. Therefore, for n big we have $P\left(\left|X_{n}-X\right|>\right.$ $\delta) \leq \epsilon / 2$. So on the one hand, we have

$$
\begin{aligned}
F_{X_{n}}(x) & =P\left(X_{n} \leq x\right) \leq P\left(X_{n} \leq x,\left|X_{n}-X\right| \leq \delta\right)+P\left(\left|X_{n}-X\right|>\delta\right) \\
& \leq P(X \leq x+\delta)+\epsilon / 2=F(x+\delta)+\epsilon / 2 \\
& \leq F(x)+\epsilon .
\end{aligned}
$$

On the other hand, we also have

$$
\begin{aligned}
F_{X}(x) & \leq F_{X}(x-\delta)+\epsilon / 2=P(X \leq x-\delta)+\epsilon / 2 \\
& \leq P\left(X \leq x-\delta,\left|X_{n}-X\right| \leq \delta\right)+P\left(\left|X_{n}-X\right|>\delta\right)+\epsilon / 2 \\
& \leq P\left(X_{n} \leq x\right)+\epsilon=F_{X_{n}}(x)+\epsilon
\end{aligned}
$$

This proves for $n \mathrm{big},\left|F_{n}(x)-F(x)\right| \leq \epsilon$. Thus $F_{n}(x) \rightarrow F(x)$ as $n \rightarrow \infty$. Since $P_{X_{n}}$ are probability distributions, $\left\|P_{X_{n}}\right\|=1$, therefore by Prop. $7.19, P_{X_{n}} \rightarrow P_{X}$ vaguely.

Problem 2. Identify \mathbb{T}^{1} with $\{z \in \mathbb{C}:|z|=1\}$.
(1) If X_{1}, \ldots, X_{n} are independent, then $P_{X_{1} X_{2} \cdots X_{n}}=P_{X_{1}} * \cdots * P_{X_{n}}$.
(2) If $\left\{X_{j}\right\}$ is a sequence of independent random variables with common distribution λ, the distribution of $\prod_{1}^{n} X_{j}$ converges vaguely to the uniform distribution on \mathbb{T}^{1} unless X_{1} is supported on a finite subset of \mathbb{T}^{1}.
Proof. (1) Recall that for any two measures on \mathbb{T}^{1}, by definition we have $\mu *$ $\nu(E)=\iint \chi_{E}\left(t_{1} \cdot t_{2}\right) d \mu\left(t_{1}\right) d \nu\left(t_{2}\right)$ where $t_{1} \cdot t_{2}$ is the group multiplication on \mathbb{T}^{1} which agrees with the standard multiplication on \mathbb{C}.

Let $A\left(t_{1}, \ldots, t_{n}\right)=\prod_{1}^{n} t_{j}$. Then $X_{1} \cdots X_{n}=A\left(X_{1}, \ldots, X_{n}\right)$, so

$$
P_{X_{1} \cdots X_{n}}=\left(P_{\left(X_{1}, \ldots, X_{n}\right)}\right)_{A}=\left(\prod_{1}^{n} P_{X_{j}}\right)_{A}
$$

Therefore,

$$
\begin{aligned}
P_{X_{1} \cdots X_{n}}(E) & =\left(P_{\left(X_{1}, \ldots, X_{n}\right)}\right)_{A}=\left(\prod_{1}^{n} P_{X_{j}}\right)_{A}(E) \\
& =\int \cdots \int \chi_{E}\left(t_{1} \ldots t_{n}\right) d P_{X_{1}}\left(t_{1}\right) \cdots d P_{X_{n}}\left(t_{n}\right) \\
& =P_{X_{1}} * \cdots P_{X_{n}}(E) .
\end{aligned}
$$

(2) As we see in HW 9 , either λ is supported on a finite subset of \mathbb{T}^{1} or $|\hat{\lambda}(k)|<1$ for all $k \neq 0$. In the latter case, by (1) we have

$$
\left|\hat{P}_{X_{1} \cdots X_{n}}(k)\right|=\left|\prod_{1}^{n} \hat{P}_{X_{j}}(k)\right|=|\hat{\lambda}(k)|^{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty \text { for } k \neq 0
$$

Notice that the uniform distribution μ on \mathbb{T}^{1} has,

$$
\hat{\mu}(k)=\int_{0}^{1} e^{-2 \pi i k x} d \mu(x)=0 \quad \text { for } k \neq 0
$$

This, together with $\hat{P}_{X_{1} \cdots X_{n}}(0)=1=\hat{\mu}(0)$, proves $\hat{P}_{X_{1} \cdots X_{n}} \rightarrow \hat{\mu}$ pointwise. Hence by a similar argument to that in Prop. 8.50, $P_{X_{1} \cdots X_{n}} \rightarrow \mu$ vaguely.

Problem 3. Given $b \in \mathbb{N} \backslash\{1\}$, let $B=\{0,1, \ldots, b-1\}$ and $\Omega=B^{\mathbb{N}}$. Put the discrete topology on B and the product topology on Ω, and let P be the product measure on Ω, where each P_{n} is b^{-1} times counting measure on B. Let $\left\{X_{n}\right\}_{1}^{\infty}$ be the coordinate functions on Ω. Then if $A_{1}, \ldots, A_{n} \subset B$,

$$
\operatorname{Prob}\left(\bigcap_{1}^{n} X_{j}^{-1}\left(A_{j}\right)\right)=b^{-n} \prod_{1}^{n}\left|A_{j}\right|
$$

and $P(\{\omega\})=0$ for all $\omega \in \Omega$.
Proof. Since $\bigcap_{1}^{n}\left(X_{j}^{-1}\left(A_{j}\right)\right)=\prod_{1}^{n} A_{j} \times B^{\mathbb{N}-\{1, \ldots, n\}}$, by definition of product measure we have,

$$
\operatorname{Prob}\left(\bigcap_{1}^{n} X_{j}^{-1}\left(A_{j}\right)\right)=\prod_{1}^{n} P_{i}\left(A_{i}\right) \times 1=b^{-n} \prod_{1}^{n}\left|A_{j}\right|
$$

Then since $\omega \in \cap_{1}^{n} X_{j}^{-1}\left(\left\{X_{j}(\omega)\right\}\right)$ for all n, it follows

$$
P(\{\omega\}) \leq b^{-n} \prod_{1}^{n} 1=b^{-n} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Problem 4. Prove the following. Let

$$
\Omega^{\prime}=\left\{\omega \in \Omega: X_{n}(\omega) \neq 0 \text { for infinitely many } n\right\}
$$

Then $\Omega \backslash \Omega^{\prime}$ is countable and $P\left(\Omega^{\prime}\right)=1$. Define $F: \Omega \rightarrow[0,1]$ by $F(\omega)=$ $\sum_{1}^{\infty} X_{n}(\omega) b^{-n}$. Then $\left.F\right|_{\Omega^{\prime}}$ is a bijection from Ω^{\prime} to $(0,1]$ which maps $\mathcal{B}_{\Omega^{\prime}}$ bijectively onto $\mathcal{B}_{(0,1]}$.

Proof. It is clear $\omega \mapsto \sum_{1}^{\infty} X_{j}(\omega) x^{j}$ defines a bijection between Ω and all power series with coefficients in B. Under this bijection, $\Omega \backslash \Omega^{\prime}$ corresponds to polynomials with coefficients in finite set B, which is clearly countable (by considering degree). Therefore $\Omega \backslash \Omega^{\prime}$ is countable as well. And since a single point has measure zero in Ω, so does the countable set $\Omega \backslash \Omega^{\prime}$, hence $P\left(\Omega^{\prime}\right)=P(\Omega)=1$.

Notice that $\mathcal{B}_{\Omega^{\prime}}$ is generated by sets $\left\{\omega \in \Omega^{\prime}: X_{j}(\omega)=a_{j}\right\}$, and hence generated by $\left\{\omega \in \Omega^{\prime}: X_{1}(\omega)=a_{1}, \ldots, X_{n}(\omega)=a_{n}\right\}$. Under F, the set $\left\{\omega \in \Omega^{\prime}\right.$: $\left.X_{1}(\omega)=a_{1}, \ldots, X_{n}(\omega)=a_{n}\right\}$ is mapped to all numbers of the form $0 . a_{1} a_{2} \ldots a_{n} \ldots$ under base b decimal expansion. This is precisely the interval $\left(\frac{j}{n^{n}}, \frac{j+1}{b^{n}}\right]$ where $j=a_{1} b^{n-1}+\cdots+a_{n}$. Now since intervals of the form $\left(\frac{j}{b^{n}}, \frac{j+1}{b^{n}}\right]$ generate $\mathcal{B}_{(0,1]}$,
F maps $\mathcal{B}_{\Omega^{\prime}}$ bijectively onto $\mathcal{B}_{(0,1]}$. Moreover, from Problem 3 , the set $\left\{\omega \in \Omega^{\prime}\right.$: $\left.X_{1}(\omega)=a_{1}, \ldots, X_{n}(\omega)=a_{n}\right\}$ has probability b^{-n} which agrees with the Lebesgue measure of $\left(\frac{j}{b^{n}}, \frac{j+1}{b^{n}}\right]$, this proves F carries P to the Lebesgue measure.
Problem 5. (Borel's normal number theorem) A number $x \in(0,1]$ is called normal in base b if the digits $0,1, \ldots, b-1$ occur with equal frequency in its base b decimal expansion, that is, if n^{-1} card $\left\{m \in\{1, \ldots, n\}: X_{m}\left(F^{-1}(x)\right)=j\right\} \rightarrow b^{-1}$ as $n \rightarrow \infty$ for $j=0,1, \ldots, b-1$. Almost every $x \in(0,1]$ (with respect to Lebesgue measure) is normal in base b for every b.

Proof. Let $Y_{m, j}(\omega)=1$ if $X_{m}(\omega)=j$ and $Y_{m, j}(\omega)=0$ otherwise. Since X_{m} 's are i.i.d., so are $Y_{m, j}$'s with $E\left(Y_{m, j}\right)=b^{-1}$ (by an easy calculation). Since Y_{m} are bounded on finite measure space, $Y_{m} \in L^{1}$, the strong law of large numbers implies $\frac{1}{n} \sum_{1}^{n} Y_{m, j} \rightarrow b^{-1}$ almost surely. Notice that

$$
\operatorname{card}\left\{m \in\{1, \ldots, n\}: X_{m}(\omega)=j\right\}=\sum_{1}^{n} Y_{m}(\omega)
$$

and F bijectively takes P to Lebesgue measure on $(0,1]$, we conclude

$$
\lim _{n \rightarrow \infty} n^{-1} \operatorname{card}\left\{m \in\{1, \ldots, n\}: X_{m}\left(F^{-1}(x)\right)=j\right\}=b^{-1}
$$

for almost every $x \in(0,1]$.
Now we may finish the proof inductively as follow. First there is a probability 1 subspace $\Omega_{0}^{\prime} \subset \Omega^{\prime}$ on which $\frac{1}{n} \sum_{1}^{n} Y_{m, 0}$ converges to b^{-1}. Then we repeat the argument for Ω_{0}^{\prime} to get a probability 1 subspace $\Omega_{0,1}^{\prime} \subset \Omega_{0}^{\prime}$ on which $\frac{1}{n} \sum_{1}^{n} Y_{m, 1}$ converges to b^{-1}. Keep doing this, we eventually get a probability 1 subspace $\Omega_{0,1, \ldots, b-1}^{\prime}$ on which $\frac{1}{n} \sum_{1}^{n} Y_{m, j}$ converges to b^{-1} for all $j=0,1, \ldots, b-1$. Notice $F\left(\Omega_{0,1, \ldots, b-1}^{\prime}\right)$ is a subset of normal numbers, so almost every $x \in(0,1]$ is normal.

